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Abstract The derivation of the statistical nature of the quantum mechanical wave func-
tion is presented within the formalism of quantum mechanics and the second quantization.
The statistical wave function may be derived for non relativistic bosons, non relativistic
fermions, and relativistic bosons by employing the commuting field operator ψ̂(x). For rel-
ativistic electrons a strictly anticommuting ψ̂(x) must be employed to derive the statistical
wave function (spinor). The discussion at the end of the paper aims to show the physical
plausibility of a statistical wave function.

Keywords Ensemble · Quantum state · Second quantization · Relativistic ensemble states ·
Eigenstates · Annihilation operator · Grassmann field

Introduction

The work of Ballantine [1], Einstein [2], Khrennikov [3], Bohr [4], and Rosenstein [5]
strongly bring to the attention that, besides being a nontrivial problem, the interpretation
of the concept of state in quantum mechanics is imperative to the understanding of quantum
phenomena and quantum theory. These in depth investigations have resulted in a multiple of
interpretations of the concept of state in quantum mechanics with the most common among
the physicists being the statistical interpretation reflecting Einstein’s stand on this subject,
and the Copenhagen interpretation invented by Bohr. A famous thought experiment which to
a good extent reveals the nature of a quantum state is the widely known EPR argument which
suggests that the wave function represents an incomplete set of information about a quan-
tum system. However, while the EPR argument defines completeness as a correspondence
between elements of the physical reality and elements of the physical theory it somewhat
leaves the definition of physical reality open to the reader. This fact is implied in the EPR pa-
per because the reasonable definition of physical reality in the EPR argument is taken to be
an element which is preceded by a measurement (with certainty) of a physical quantity and
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thereby making the physical reality comes second to the measurement of the physical quan-
tity. This method of defining physical reality might have provided a window for a counter
argument of the EPR argument. However, any legitimate statement about nature should be
a consequence of honest investigations and should not be constructed for the purpose of a
counter argument only. If the window in the EPR paradox mentioned above indeed formed
a weakness in it’s presentation then it is possible that the counter argument to the EPR
proposal originated from this weakness. If this possibility regarding the motivation for de-
veloping a counter argument is confirmed then one can be certain that the counter argument
was not a result of scientific observation of nature. It is not the intention here to critically
criticize any counter arguments of the EPR “paradox”, however, it is worth mentioning that a
remarkable comment made [1] on the subjective interpretation of the quantum probability is
that it is not a necessary one. In addition, the statistical interpretation have the advantage of
not running into what have been called the “metaphysical complications that one would have
to confront if one is to believe that a pure state is an exhaustive description of an individual
system” [1]. The EPR argument didn’t propose a statistical interpretation of the quantum
state, nevertheless it lead to such an interpretation [6]. Moreover, quantum interference have
been concluded [3] by considering the statistical interpretation of the quantum state.

With many arguments in favor of both the statistical and the subjective interpretation of
the quantum state it becomes relevant to present an analytic derivation which will support
one of the two interpretations. In what follows it is going to be the statistical interpretation
which will be given a proof. For that matter one firstly should discriminate between statis-
tical averages which are evaluated for a system in a mixed state and quantum expectation
values which are calculated for a system in a pure state. The statistically interpreted wave
function ψ(x) will be proven to be the expectation value of the annihilation operator ψ̂(x)

evaluated in a pure state. The pure state is constructed to be an eigenvector of the opera-
tor ψ̂(x), where x = (�x, t). This eigenvector will be designated by the symbol |〉 and thus
one may write ψ(x) = 〈|ψ̂(x)|〉. The eigenvector of ψ̂(x) will bear a strong resemblance to
the eigenvector of the positive frequency electric field operator defined in quantum optics
but the interpretation will be entirely different. It was shown [7] that identifying the func-
tion ψ(x) defined above with the quantum mechanical wave function exclusively rely on
whether or not the operator ψ̂(x) satisfy a dynamical equation similar to the one satisfied
by the wave function. Thus if ψ̂(x) satisfy a certain dynamics then the function ψ(x) must
satisfy the same dynamics.1 For non relativistic spinless particles the function ψ(x) will rep-
resent the state function if it obeys the Schrödinger equation which means that in that regime
the operator ψ̂(x) must satisfy the Schrödinger equation as well. The possibility of utilizing
commuting fields to define both bosonic and fermionic ensemble wave functions when in the
non relativistic regime will be discussed below in the section on limitations. For relativistic
bosons the dynamical equation which the annihilation field operator ψ̂(x) satisfy is known
to be the Klein-Gordon equation [8]. In fact only the commuting ψ̂(x) operator satisfy the
Klein-Grodon equation. This means that the ensemble wave function ψ(x) pertaining to a
relativistic boson is equal to 〈|ψ̂(x)|〉 with ψ̂(x) being a strictly commuting operator. For a
charged spinless relativistic boson the ensemble wave function ψ(x) was shown [7] to be
proportional to the average occupation number of particles and antiparticles.

The relativistic electron with spin- 1
2 is a special case. For the relativistic Dirac electron

one must identify the function ψ(x) with the spinor that satisfies the Dirac equation. Ac-
cording to the prescription ψ(x) = 〈|ψ̂(x)|〉 the field operator ψ̂(x) must satisfy the Dirac

1This fact is true given the eigenvector |〉 is independent of space and time.
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equation as well. However, the Dirac equation is satisfied only by anticommuting ψ̂(x).
Therefore the ensemble spinor ψ(x) pertaining to a relativistic electron is 〈|ψ̂(x)|〉 with
ψ̂(x) a strictly anticommuting operator. The commutation rule of the field ψ̂(x) will deter-
mine the spin statistics which will in turns determine the structure of the eigenvector |〉. The
eigenvector of an anticommuting operator ψ̂(x) is possible to define only by introducing
grassmann numbers. This problem will be treated in Sect. 5.

No less important than a mathematical proof of an ensemble wave function is the physical
plausibility of such a description. For that purpose some remarks are made at the end of the
paper to propose the physical origin behind the fluctuations that are to occur even for an
ensemble of similar quantum particles prepared under the same initial conditions. A brief
section is also dedicated to show the optical application of the electron eigenvector equation.

1 The Ensemble Quantum State of a Spinless Non Relativistic Particle

The statistical interpretation of the quantum state, and thus the quantum probability, is pos-
sible to infer from an expression which relates the quantum state to a statistical, though not
canonical, average. This expression will be derived by means of the formalism of quantum
theory and the second quantization (field theoretic).

When defining mean values in quantum theory physicists discriminate between two types
of averages. These two types of averages are the statistical average [9] of an observable q̂ in
a mixed state, and the quantum mechanical expectation value of an observable q̂ in a pure
state. The statistical average of q̂ has been defined [10] to be the incoherent superposition
given by

〈q̂〉 =
∑

i

ρi〈q̂〉i (1)

where ρi is a real number [9, 10] reflecting the statistical weight of the ith pure state. The
quantities 〈q̂〉i which appear in (1) represent the coherent quantum expectation value of the
observable q̂ evaluated in the pure state

|�i〉 =
∑

k

ci
k|φk〉 (2)

where {|φk〉} is a set of eigenvectors of a complete operator and where the ci
k’s are complex

numbers. It is (2) which should be of utmost concern when one attempts to provide an
analytic proof of the statistical nature of the quantum state. For a statistical interpretation of
the mixed state which leads to (1) is self evident and do not need any proof. In fact, (1) leads
to the result

〈q̂〉 = Tr(ρ̂q̂) (3)

where ρ̂ = ∑
i ρic

(i)∗
k′ c

(i)
k is the density operator for a system prepared in a mixed state, and Tr

stands for trace. Evidently (3) have a strong resemblance to the classical statistical ensemble
average [9]. In the literature on quantum mechanics the term state or wave function is used
frequently to mean the pure quantum state [10] therefore the word state in this paper shall
bare the same meaning as a pure state. The statistical interpretation of the pure state in (2)
will be accomplished by means of the complex coefficients ci

k .
Consider the average of an observable q̂ evaluated in a pure state given by (2). This

average can be calculated using (1) along with the constraint ρi = 1, ρj = 0 ∀j �= i, which
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will reduce the expression in (1) to

〈q̂〉 = 〈q̂〉i = 〈�i |q̂|�i〉 (4)

Denote the expectation value of the observable q̂ by qi such that

qi = 〈q̂〉i = 〈�i |q̂|�i〉 (5)

with the normalization condition

〈�i |�i〉 = 1 (6)

Equation (5) may be expressed as an eigenvalue equation (multiply from the left by the bra
〈�i |)

q̂|�i〉 = qi |�i〉 (7)

where q̂|φk〉 = qi |φk〉. Now consider the expectation value, as defined by (5), of the field
operator ψ̂(�x) which is defined in the second quantization to be the operator that annihilates
a particle at the coordinate �x, and denote the pure state operator by ρ = |〉〈|. Bringing (7)
into the picture one may write the eigenvalue equation

ψ̂(�x)|〉 = ψ(�x)|〉 (8)

where ψ(�x) replaces qi in (7). Consistency with (5) will provide a method for calculating
ψ(�x)

ψ(�x) = 〈|ψ̂(�x)|〉 (9)

Now one can claim that the quantum mechanical wave function �(�x) is the normalized form
of the function in (9)

�(�x) = 1√
N

〈|ψ̂(�x)|〉 (10)

where

N =
∑

k

〈nk〉 (11)

is the normalization constant.2 In quantum field theory the operator ψ̂(�x) is often expanded
in a series of annihilation operators such that

ψ̂(�x) =
∑

k

ĉkφk(�x) (12)

where ĉk|nk〉 = √
nk|nk − 1〉, nk is the number of particles (quanta) per state k, and the φk’s

are eigenvectors of the energy operator. A legitimate normalized coherent pure state which
satisfies (8) was shown [7] to be a product of the eigenvectors of the annihilation operators

|〉 =
∞∏

k=1

|αk〉 (13)

2The validity of the constraint in (11) for a system in a pure state will be discussed in Sect. 2, and its validity
for statefunctions that are grassmann fields will be discussed briefly in the section on the ensemble quantum
state for a relativistic electron.
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where

ĉk|αk〉 = αk|αk〉 (14)

and where the eigenvectors are given by [11]

|αk〉 =
∞∑

nk=0

α
nk

k√
nk!e−|αk |2/2|nk〉 (15)

Note that the square of the coefficients of the expansion in the Fock basis given in (15) is
precisely the Poisson distribution.3 The eigenvalues of (14) are given by4 αk = √〈nk〉 eiδk ,
where δk is a phase factor corresponding to the complex value of αk . Now with the expansion
in (12) one will immediately get the result that the function in (9) can be written as an
expansion with the expansion coefficients being the eigenvalues of the operators âk

ψ(�x) =
∑

k

αkφk(�x) (16)

which means that the wave function in (10) can be written as

�(�x) =
∑

k

( 〈nk〉
N

)1/2

eiδk φk(�x) (17)

When using the φk’s which are the solutions to the time dependent Schrödinger equation
one can write the normalized function �(�x) in it’s time dependent form

�(x) =
∑

k

ckφk(x) (18)

where the vector notation x = (�x, t) is used and where ck = (〈nk〉/N)1/2eiδk . If one identifies
�(x) as the pure state then a comparison between (18) and (2), with the understanding that
(2) must be written in the coordinate representation, will make clear the ensemble interpre-
tation of the state function for a single particle. Identifying �(x) with the state function may
be done by proving that �(x) satisfies the Schrödinger equation. Such a proof is facilitated
by the fact that the field operator ψ̂(x, t) (for both bosons and fermions) itself satisfies the
Schrödinger equation and the fact that the state |〉 is independent of position and time.5 The
ensemble interpretation of the quantum state �(x) can be infered from (18) where the sin-
gle particle state is directly proportional to the average particle number (average number of
quanta) per state 〈nk〉. According to the ensemble interpretation [1] the 〈nk〉’s appear in the
sum over the quantum numbers because in an ensemble of similarly prepared systems, say
the set of all electrons, which have been subjected to the same state preparation one may
not control the number of the members in the ensemble which contribute to the kth quan-
tum state. Thus the state function �(x) for a single particle may be identified as a purely

3A simple derivation of the eigenvector in (15) is given in reference [12].
4It is very easy [7] to show that 〈nk〉 = |αk |2, where in evaluating the average the Poisson distribution per-
taining to the coefficients of the expansion in (15) is used.
5The proof that the function �(x) satisfies the Schrödinger equation is straightforward, see for example
reference [7].
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statistical function which may be utilized to calculate quantum expectation values. This in-
terpretation of �(x) is in full support of Einstein’s approval for an ensemble interpretation
of the quantum state from which one deduces the incompleteness of a quantum state vector
in describing an individual system.

In agreement with Ballantine’s assertion regarding the ensembles being contemplated in
the statistical interpretation of the quantum state versus the ensembles used in statistical
mechanics, one notes that the ensemble represented by the wave function �(x) in (18)
is different from the canonical ensembles defined in statistical mechanics. The difference
between the two ensembles may be seen by the fact that when evaluating the average 〈nk〉
one must use the Poisson distribution [7] and not a distribution which correspond to any of
the canonical distributions in statistical mechanics. A quantum ensemble analogous to the
classical thermodynamic ensemble is possible only when evaluating the average, such as the
average shown in (1), of an observable of a system which is in a mixed state.

Since the constraint in (11) is similar to the one in the grand canonical ensemble the-
ory [9] and since, as discussed above, the ensemble considered here is unlike any of the
canonical ensembles it is important to present a direct proof of the constraint in (11).

2 Proof of the Normalization Condition

One must not confuse the 〈nj 〉 which appears in (11) with the average occupation number
defined in the grand canonical ensemble theory. While it is true that N = ∑

j 〈nj 〉gc in the
grand canonical ensemble theory the fact is when evaluating 〈nj 〉gc, say for Bosons,6 one
needs to use the geometric distribution function [9]

PB(nj ) = (〈nj 〉)nj

(〈nj 〉 + 1)nj +1 (19)

however, in (11) the quantity 〈nj 〉 is evaluated using the Poisson distribution function [7]

P (nj ) = (〈nj 〉)nj e−〈nj 〉

nj ! (20)

and thus the validity of the constraint N = ∑
j 〈nj 〉gc when 〈nj 〉 is in place of 〈nj 〉gc will

need a justification.
Consider the observable

n̂(x) = ψ̂†(x)ψ̂(x) (21)

which is defined in the second quantization to be the particle number density operator. Next
take the average of n̂(x) as in (1) and take the density operator for a pure state to be ρ = |〉〈|

〈n̂(x)〉 = Tr(ρn̂(x)) (22)

Equation (22) may be written as

〈n̂(x)〉 = Tr
(
ρψ̂†(x)ψ̂(x)

) = Tr
(
ψ̂(x)ρψ̂†(x)

)
(23)

6For fermions the distribution is given by PF (nj ) = (〈nj 〉)nj /(1 − 〈nj 〉)nj −1 with nj being equal to either
1 or 0.
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which is true due to the cyclic property of the trace. Now evaluate the trace in (23) using the
coherent pure state and the ρ given above. This will immediately give

〈n̂(x)〉 = ψ∗(x)ψ(x) (24)

where in getting (24) use have been made of the adjoint of (8). Now substitute the function
in (16) into the right hand side of (24)

〈n̂(x)〉 =
∑

j,k

〈nj 〉1/2〈nk〉1/2 ei(δk−δj )φ∗
j (x)φk(x) (25)

For j = k (25) will reduce to the common form for the density matrix in a multiparticle
system [8]

〈n̂(x)〉 =
∑

j

〈nj 〉φ∗
j (x)φj (x) (26)

In the second quantization the total particle number operator is obtained by integrating the
number density operator n̂(x) over all space

N̂ =
∫

d3xn̂(x) (27)

Equation (27) will lead to its ensemble average form

N = 〈N̂〉 =
∫

d3x 〈n̂(x)〉 (28)

With the orthonormal property of the set {φj (x)} it becomes evident from (28) and (25) that

N =
∑

j

〈nj 〉 (29)

Therefore imposing the particle number constraint in (11), which was assumed before [7] to
be true in order to demonstrate the compatibility of the norm square of the function in (17)
with the probability density function, is justified.

3 Optical Application

Realizing the similarity in formalism between the non relativistic particle field eigenvector
equation, (8), and the electric field operator eigenvector equation [12] it becomes natural to
question if by means of (8) one may provide a theoretical description for the appearance of
fringes when conducting a double slit experiment with electrons. The appearance of fringes
being a phenomenon that have been observed for both particle beams and light beams and
one that was explained by the concept of coherence. Coherence may quantitatively be de-
scribed by the normalized correlation function [13]

g(1)(x, x ′) = G(1)(x, x ′)√
G(1)(x, x)G(1)(x ′, x ′)

(30)
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where x again indicates both the spatial and the temporal coordinates and where G(1)(x, x ′)
is the correlation function which in quantum optics is defined to be

G(1)(x, x ′) = Tr
(
ρÊ(−)(x)Ê(+)(x ′)

)
(31)

with Ê(+)(x) = ê∗ · �̂E
(+)

(x), ê a complex unit vector representing the direction of pho-

ton polarization, and �̂E
(+)

(x) the photon annihilation operator [14]. Likewise, Ê(−)(x) =
ê · �̂E

(−)

(x) where �̂E
(−)

(x) is the photon creation operator. The superscript (1) in the function
G(1)(x, x ′) indicates that it is the first-order correlation function. Furthermore, the normal-
ized correlation function is related to the visibility of fringes with a value of unity indicating
the appearance of fringes [15].

The photon annihilation and creation operators are based on separating the electric field
operator into a positive and negative frequency parts such that

�̂E(x) = �̂E
(+)

(x) + �̂E
(−)

(x) (32)

and

�̂E
(−)

(x) = �̂E
(+)†

(x) (33)

making it possible to write the correlation function in (31) in terms of the annihilation oper-
ator and it’s adjoint

G(1)(x, x ′) = Tr
(
ρÊ(+)†(x)Ê(+)(x ′)

)
(34)

Now a necessary condition for a first-order coherence, and thus the appearance of fringes, is

|g(1)(x, x ′)| = 1 (35)

which is an equality that may be fulfilled by the factorization condition [13]

G(1)(x, x ′) = E∗(x)E(x ′) (36)

where the quantities on the right hand side (36) are the electric field and its complex conju-
gate. In quantum optics the electric field and it’s complex conjugate are related to the photon
annihilation and creation operators, respectively. The relation between the classical and the
quantum fields is expressed by means of the eigenvector equations

Ê(+)(x)|〉 = E(x)|〉 (37)

and

〈|Ê(+)†(x) = 〈|E∗(x) (38)

Clearly, if the photon is in a state such that ρ = |〉〈| then the correlation function in (34)
will factorize into a form similar to the one in (36). Thus if the photon is in the ρ state then
it will satisfy the first-order coherence condition in (35) and therefore the appearance of
fringes.

The above argument regarding the appearance of fringes was possible to make due to
the eigenvector equation in (37) and it’s adjoint. Equation (8) is the particle eigenvector
equation which is analogous to the electric field eigenvector equation with the field operator
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ψ̂(x) in place of the electric field operator Ê(+)(x) and the eigenfunction ψ(x) in place
of the function E(x). One may carry the analogy further as (21) and (22) prove that the
ensemble average of the observable n̂(x) is in fact the correlation function defined in (34)
but with ψ̂(x) and ψ̂†(x) in place of Ê(+)(x) and Ê(+)†(x). Therefore, for electrons the
correlation function which corresponds to (34) is

G(1)(x, x ′) = Tr
(
ρψ̂†(x)ψ̂(x ′)

)
(39)

which with (8) and it’s adjoint

〈|ψ̂†(x) = 〈|ψ∗(x) (40)

may factorize into a form similar to (36)

G(1)(x, x ′) = ψ∗(x)ψ(x ′) (41)

thus making the normalized correlation function equal to unity as in (35) and that will in-
dicate the appearance of fringes for the electrons that are in the state described by ρ = |〉〈|.
Therefore the appearance of electron fringes is possible to describe theoretically by means
of defining an eigenvector equation for the electron annihilation field operator as in (8).

4 Limitations

A strict condition on the function E(x) in (37) is the fact that it must satisfy the wave equa-
tion [13]. Since the eigenvector in (37) is independent of space and time this restriction will
further demand the operator Ê(+)(x) itself to satisfy the wave equation. This fact is evident
by multiplying (37) from the left by the bra vector 〈| and utilizing the normalization 〈|〉 = 1.
The particular constraint on the electric field operator mentioned above clearly applies to
the electron field operator in (8). In the case of the electron the constraint becomes the fact
that the function ψ(x) in (8) must obey the Schrödinger equation and that will immediately
demand the operator ψ̂(x) in (8) to obey the Schrödinger equation as well. On the other
hand the operator ψ̂(x), being time dependent, must satisfy the Heisenberg equation. The
Heisenberg equation relates the evolution of the operator to it’s commutator with the Hamil-
tonian operator which for both the commuting and the anticommuting field operators lead
to the Schrödinger equation for ψ̂(x). This fact along with (9), and the fact that |〉 is inde-
pendent of time and coordinate, will make the function ψ(x) be the formal solution to the
Schrödinger equation. Without the constraint of ψ̂(x) satisfying the Schrödinger equation
the function in (17) may not be identified with the quantum mechanical state function. The
question of whether to use commuting or anticommuting field operators did not matter in as
far as the derivation of the non relativistic spinless ensemble quantum state function given
in (18). The critical equation which will lead to (18) is (14), i.e., the eigenvector equation
for the annihilation operator. For bosons the eigenvectors are given by (15) which clearly
admits infinitely many particles (quanta) into a single k state and thus rules out the possi-
bility of defining (8), which leads to (14) and (18), for fermions. In deriving the ensemble
state function in (18) for non relativistic electrons the problem may be classified as being
two fold:

1. The possibility of defining an eigenvector similar to the one in (15) for a particle which
obeys the fermion statistics.
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2. The presentation of a proof that the statistical function �(x) defined for electrons is a
solution to the Schrödinger equation.

The discussion above clears item number 2 out of the way but for item number 1 a rein-
terpretation of the state in (15) becomes necessary. It was shown in a former paper [7] that
defining an eigenvector as in (15) for electrons demanded a model in which there exist an
infinite number of orbitals per a given quantum state k. Each orbital was assumed to be
occupied by either one electron or non. This model may be represented by the sequence

Ak = (n1
k, n

2
k, n

3
k, . . . , n

i
k, . . .) (42)

where ni
k is the number of electrons in the kth state found in the ith slot. Clearly ni

k can
hold only two values which are either 1 or 0. The position of the slot may represent the
experimental trial number. Thus ni

k may be read as the number of electrons found in the
kth state at the ith run of the experiment (either 1 or 0). Thus the total number of elements
in the sequence Ak may be interpreted as the number of experimental runs to find if an
electron does occupy the kth state or not. This sequence of experiments, measuring if an
electron occupies a kth state or not, can be identified with Bernoulli trials. It is known [16]
that in the limit of an infinitely many trials the Bernoulli distribution approaches the Poisson
distribution. Thus if pk is the probability of finding an electron in the kth state at any of the
experimental runs and if qk is the probability of not finding one in the kth state in the same
run then

P (nk) = jk!
nk!(jk − nk)!p

nk

k q
(jk−nk)

k (43)

is the probability that out of the7 jk = |Ak| experiments nk of them8 will find an electron in
the kth state. The limit9 jk � 1 may be interpreted as conducting the experiments infinitely
many times. In that limit the probability in (43) may be approximated by a Poisson dis-
tribution similar to the one given in (20). One may now contemplate an eigenvector for the
annihilation operator which describes the above experimental trials. The general eigenvector
for the kth state may be constructed as follows

|βk〉 =
∞∑

nk=0

Cnk
|nk〉 (44)

with

Cnk
= (〈nk〉eiδk )nk/2

√
nk!

e−〈nk 〉/2 (45)

and |Cnk
|2 as the probability that out of a total of jk runs a subtotal of nk times an electron is

found in the kth state. The eigenvector in (44) leads to the ensemble electron state function
given in (18), the statistical interpretation of which was discussed following (18). The model
of interpreting the nk as the number of experimental runs that find an electron in the kth state

7For any sequence A the symbol |A| indicates the cardinality of the A, or the total number of elements in A.
8Given the set B = ⋃

i

ni
k
�=0

ni
k

then one may define nk = |B|.
9This limit should be supplemented by the condition that the product jkpk is moderate. It is also the same
limit imposed by Khrennikov when he discusses the frequency interpretation of the quantum probability.
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necessitates the usage of a commuting field operator ψ̂(x). The field operator ψ̂(x) do not
create an electron, in fact it creates an electron filled quantum state k in any of the slots
of the sequence Ak . The general eigenvector of ψ̂(x) is constructed by forming a product
between the states that were defined in (44)

|〉 =
∞∏

k=1

|βk〉 (46)

Each of the vectors |βk〉 expresses the outcome of an experiment on an ensemble of elec-
trons. In the experiment a measurement is made on each electron in the ensemble to deter-
mine whether or not it is in the kth state. Clearly the operator ψ̂(x) defined for an ensemble
of electrons here is one that is constructed to place as many electrons in the ensemble into a
single quantum state k. For the electrons in the ensemble are independent and as such one
do not violate the exclusion principle by assuming that many electrons in the ensemble may
occupy the same quantum state.

It is possible to object to the statistical interpretation given to the eigenvector in (46)
because with a predetermined interpretation of (46) the statistical interpretation of the state
function in (18) does not become defined as analytically driven. To give an answer to that
possible objection one must recall that (17) was analytically derived for a boson using the
formalism of quantum mechanics and the interpretations of the second quantization. With
an analytic derivation of the statistical state function pertaining to a boson it becomes logi-
cal to expect that the same interpretation is attributable to a fermion state function. For the
concept of a state function must be a general one and it may not be interpreted statistically
for bosons and reinterpreted for fermions. Thus given that the ensemble wavefunction in
(18) was derived for bosons it becomes natural to think about the extension of the ensemble
interpretation such that it can include the fermion wavefunction which will justify the antic-
ipated statevector in (46). Having defined a sequence of experiments to detect an electron in
the kth state, as in (42), made the employment of the commuting field ψ̂(x) in deriving the
ensemble electron wavefunction a possibility and thereby cleared item number 1 mentioned
above. If one is to still ask the question; can the function ψ(x), derived by means of the
commuting ψ̂(x), indeed be identified with the electron wavefunction? The answer will be
yes only if ψ(x) corresponds to a spinless non relativistic electron. For in that case both
the commuting and the anticommuting ψ̂(x) will satisfy the Schrödinger equation and that
property of ψ̂(x) will prove that the function ψ(x) is the electron wavefunction when the
Schrödinger operator is applied to ψ̂(x) in (9).

For the relativistic electron one must strictly use anticommuting ψ̂(x) in (9) to derive
the ensemble quantum state for the electron. This limitation is due to the fact that only the
anticommuting ψ̂(x) will satisfy the relativistic Dirac electron equation. For that purpose a
review of (8) for anticommuting fields becomes necessary.

5 The Ensemble Quantum State for Relativistic Electrons

Extending (17) to include relativistic electrons will demand the study of eigenstates of an-
ticommuting field operators, and that is because the Dirac equation is satisfied by the an-
ticommuting annihilation field operator. However, fermionic eigenstate of the anticommut-
ing annihilation field operator was possible to find by means of grassmann numbers only
[17, 18]. The usage of such an eigenstate will finally lead to a wavefunction which is a
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grassmann field and not a complex field. This route of defining a state function as a grass-
mann field is mandatory only in the relativistic regime and only if one seeks to connect the
relativistic bispinor to the relativistic field operator through an eigenvalue equation of the
form given in (8). The derivation of the analogous equation to (17) for relativistic electrons
will be presented next.

Up until (65) the analysis will be a semi replica of what was published [17] on the fermi-
onic coherent states the presentation of which is important for clarity only. The relations
among fermionic creation and annihilation operators are

{b̂i , b̂
†
j } = δij (47)

{b̂i , b̂j } = {b̂†
i , b̂

†
j } = 0 (48)

where the curly brackets indicate anticommutation and where

b̂
†
j |1〉 = b̂j |0〉 = 0 (49)

Among the grassmann numbers the anticommutation relations must be defined as well

β2
i = β∗2

i = {βi, βj } = {β∗
i , βj } = {β∗

i , β∗
j } = 0 (50)

The relations among the grassmann numbers with the Fermion creation-annihilation opera-
tors are

{βi, b̂j } = {βi, b̂
†
j } = {β∗

i , b̂j } = {β∗
i , b̂

†
j } = 0 (51)

where the grassmann numbers βi and β∗
i are independent and conjugate to one another. The

Fermion coherent state for the kth mode is

|βk〉 = eb̂
†
k
βk−β∗

k
b̂k |0〉 (52)

This bears a strong resemblance to the Bosonic coherent state except for the sign of that part
of the argument with the creation operator. When expanding the exponential in (52) only
terms up to the second power will survive. Because of the set of (50) and (51) terms with
power three or above will be equal to zero. Hence the expansion in (52) will be as simple as

|βk〉 =
(

1 + (
b̂

†
kβk − β∗

k b̂k

) + b̂
†
k b̂kβ

∗
k βk − β∗

k βk

2

)
|0〉 =

(
1 − β∗

k βk

2

)
|0〉 − βk|1〉 (53)

which one can prove to be true with the aid of (47), (49), and (51). With the displacement
operator in its expanded form it is possible to prove that the state |βk〉 is an eigenstate of the
annihilation operator

b̂k|βk〉 = −b̂kβk|1〉 = +βkb̂k|1〉 = βk|0〉 (54)

however, from (53) one may write the vacuum state as a multiple of the state |βk〉

|βk〉 =
(

1 + βkβ
∗
k

2

)
|0〉 − βk|1〉 = |0〉 + βkβ

∗
k

2
|0〉 − βk|1〉 (55)

Upon multiplying (55) by βk and using the property of the grassmann numbers in (50) one
can verify the relation

βk|0〉 = βk|βk〉 (56)
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Equation (56) together with (54) will show that the state |βk〉 is an eigenstate of the opera-
tor b̂k

b̂k|βk〉 = βk|βk〉 (57)

Likewise the displacement operator

〈0|eβ∗
k
b̂k−b̂

†
k
βk = 〈βk| (58)

will lead to an eigenvalue equation which is the adjoint of the one that appears in (57)

〈βk| = 〈0|
(

1 − β∗
k βk

2

)
− 〈1|β∗

k (59)

operating on the left of (59) with b̂
†
k

〈βk|b̂†
k = 〈0|b̂†

k − 〈0|β
∗
k βk

2
b̂

†
k − 〈1|β∗

k b̂
†
k = 〈0|β

∗
k b̂

†
kβk

2
+ 〈1|b̂†

kβ
∗
k = 〈0|β∗

k (60)

In (59) exchange the order of β∗
k βk , multiply from the left by β∗

k and apply the definition in
(50) to get the conjugate of (56)

〈βk|β∗
k = 〈0|β∗

k (61)

Equation (61) along with (60) will give the conjugate of (57)

〈βk|b̂†
k = 〈βk|β∗

k (62)

To construct a multimode state one needs to apply successive operators to the vacuum state

|〉F ≡ |β1β2 · · ·〉 =
∞∏

k=1

eb̂
†
k
βk−β∗

k
b̂k |0〉 (63)

which by means of the Hausdorff-Baker-Campbell relation and the commutator

[b̂†
i βi − β∗

i b̂i , b̂
†
jβj − β∗

j b̂j ] = 0

may be written regardless of the order in which the βk’s appear

|〉F = e
∑∞

k=1 b̂
†
k
βk−β∗

k
b̂k |0〉 (64)

this means that, unlike the eigenstates with complex numbers [18], the multimode eigenstate
with grassmann numbers may be used to represent physical states. Now that the multimode
Fermion eigenstate is defined one may write the eigenvalue equation for the Fermionic field
operator ψ̂(x). Clearly, the permutation property which is expressed by (64) will make it
possible to write an eigenvalue equation for the kth mode using the multimode statevector

b̂k|〉F = βk|〉F (65)

with the expression

ψ̂(x) =
∑

k

b̂kφk(x)
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and (65) one may write the analogue of (8) for anticommuting fields

ψ̂(x)|〉F = ψ(x)|〉F (66)

however, now the eigenvalue

ψ(x) =
∑

k

βkφk(x) (67)

is a grassmann field. It is now possible to introduce the normalized fermionic amplitude
function analogous to (10)

�F (x) = 1√
N

F 〈|ψ̂(x)|〉F = 1√
N

ψ(x) (68)

The average occupation number is

〈nk〉 = 〈βk|b̂†
k b̂k|βk〉 = β∗

k βk (69)

where 〈βk|βk〉 = 1 as one may easily verify by taking the product of (53) with (59). Fur-
thermore with (65) and it’s adjoint the number operator may also be calculated using the
multimode eigenvector 〈nk〉 = F 〈|b̂†

k b̂k|〉F = β∗
k βk leading to

βk =
∫

dβ∗
k 〈nk〉 (70)

where for grassmann numbers the process of integration is equivalent to the process of taking
the derivative, that is,

∫
dβ∗

k β∗
k = 1

With (65) in mind, one can relate the fermionic wavefunction in (68) to the average
occupation number per mode

�F (x) = 1√
N

F 〈|ψ̂(x)|〉F = 1√
N

F 〈|
∑

k

b̂kφk(x)|〉F

= 1√
N

∑

k

F 〈|b̂k|〉F φk(x) = 1√
N

∑

k

βkφk(x) (71)

Equation (70) will directly give that relation

�F (x) = 1√
N

∑

k

(∫
dβ∗〈nk〉

)
φk(x) (72)

Equation (72) for anticommuting fields is analogous to (17) which was developed for com-
muting fields. The complex conjugate of (72) is given by

�∗
F (x) = 1√

N
F 〈|ψ̂†(x)|〉F = 1√

N

∑

k

β∗
k φ∗

k (x) (73)
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and since β∗
k = ∫

dβk〈nk〉 we may write (73) as

�∗
F (x) = 1√

N

∑

k

(∫
dβ〈nk〉

)
φ∗

k (x) (74)

Integrating the product of (72) with (74) will prove that �F (x) satisfies the normalization
axiom of the probability density

∫
d3x �∗

F (x)�F (x) = 1

N

∑

j

∫
dβj 〈nj 〉

∫
dβ∗

j 〈nj 〉 (75)

where the orthonormal property of the set {φk(x)} have been utilized. Note that from (70)

∫
dβj 〈nj 〉 = β∗

j
∫

dβ∗
j 〈nj 〉 = βj

(76)

therefore
∫

dβj 〈nj 〉
∫

dβ∗
j 〈nj 〉 = β∗

j βj = 〈nj 〉 (77)

Equation (77) together with
∑

j 〈nj 〉 = N proves that the right hand side of (75) is unity.
Before proceeding further it is best to see a proof of the constraint

∑
j 〈nj 〉 = N when one

is dealing with grassmann numbers. As in (21) of Sect. 2, consider the fermionic operator

n̂(x) = ψ̂†(x)ψ̂(x) (78)

with (66) and a density operator ρ = |〉F F 〈| an ensemble average of n̂(x), similar to (1),
will give

〈n̂(x)〉 = ψ∗(x)ψ(x) =
∑

k,k′
β∗

k′βkφ
∗
k′(x)φk(x) (79)

where ψ(x) is defined in (67). The total number of particles (quanta), or the total number of
runs, is

N =
∫

d3x〈n̂(x)〉 =
∑

k

β∗
k βk =

∑

k

〈nk〉 (80)

where the orthonormal property of the expansion basis in (67) have been employed, and
where (77) have been used to write the final answer in the form of a sum over averages.
Equation (80) shows that the normalization constraint applies to the grassmann field as well.

With the eigenstate of the anticommuting annihilation operator defined it is now possible
to discuss the ensemble quantum probability of relativistic electrons. Relativistic electrons
are particles which obey the spin- 1

2 Dirac equation [19]

i�
∂�̄(x)

∂t
= (

c �̂α · �̂p + m0c
2β̂

)
�̄(x) (81)
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where �̄(x) is a four component spinor. Since the Dirac field ψ̂(x) satisfies the Dirac field
equation [8]

i�
∂ψ̂k(x)

∂t
= (

c �̂α · �̂p + m0c
2β̂

)
k�

ψ̂�(x) (82)

the eigenvalue ψk(x) of the eigenvalue equation

ψ̂k(x)|〉F = ψk(x)|〉F (83)

satisfies the Dirac equation as well which means that the eigenvalue which appears in (83)
is the kth solution to the Dirac equation for electrons. The relativistic electron wavefunction
which satisfies the Dirac equation may therefore be written as

�
(+)
k (x) = 1√

N
ψ

(+)
k (x) = 1√

N
F 〈|ψ̂(+)

k (x)|〉F (84)

where the plus sign stands for positive energy solution to (81). The field operator for this
particular solution of positive energy is given by

ψ̂(+)(x) =
∫

d3p

(2π�)3/2

√
m0c2

E

∑

s

b̂(p, s) u(p, s)e− i
�

pμxμ

(85)

where pμ = (p0,p1,p2,p3) = (E/c,−px,−py,−pz) is the covariant momentum four vec-
tor, xμ = (x0, x1, y2, z3) = (ct, x, y, z) is the contravariant position four vector, pμxμ =
Et − �p · �x is the four vector scalar product, and where the index s in the sum stands for sum-
ming over spin orientation. The u(p, s) is a bispinor, and b̂(p, s) is the electron annihilation
operator. When operating on the Fermionic coherent state the operator ψ̂(x) will produce
it’s eigenvalue as it is shown in (65) and (66). The analogue of (17) for a relativistic electron
can now immediately be written

�(+)(x) = 1√
N

F 〈|ψ̂(+)(x)|〉F =
∫

d3p

(2π�)3/2

√
m0c2

NE

∑

s

β(p, s) u(p, s) e− i
�

pμxμ

(86)

where β(p, s) = ∫
dβ∗(p, s)〈n(p, s)〉, and where

N =
∫

d3p
∑

s

〈n(p, s)〉 (87)

is the total number of particles with positive energy and both orientations of spin, and where
β(p, s), as in (70), is expressed in terms of average occupation number.

To test the normalization axiom of the probability function in (86) multiply that equation
by it’s adjoint and integrate over all space

∫
d3x�(+)†(x)�(+)(x) =

∫
d3x

N

d3p′d3p

(2π�)3

m0c
2

√
E′E

∑

s,s′
β∗(p′, s ′)β(p, s)

×u†(p′, s ′)u(p, s)e
i
�

(p′
μ−pμ)xμ

=
∫

d3p′d3p

N
δ �p′, �p

m0c
2

√
E′E

∑

s,s′
β∗(p′, s ′)β(p, s)

×u†(p′, s ′)u(p, s)e
i
�

(p′
0−p0)x0

(88)
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where [19]
∫

d3x
e

i
�

( �p− �p′)·�x

(2π�)3
= δ �p′, �p

The integration over �p′ will make p′
0 = p0, and that equality is due to the relativistic energy

being E = √| �p|2c2 + (m0c2)2, therefore

∫
d3x�(+)†(x)�(+)(x) =

∫
d3p

N

m0c
2

E

∑

s,s′
β∗(p, s ′)β(p, s)u†(p, s ′)u(p, s) (89)

which can be further simplified due to the relation [19]

u†(p, s ′)u(p, s) = δs′,s

(
E

m0c2

)

leading to

∫
d3x�(+)†(x)�(+)(x) = 1

N

∫
d3p

∑

s

β∗(p, s)β(p, s) = 1

N

∫
d3p

∑

s

〈n(p, s)〉 = 1

(90)
where in the last step (77) and (87) were employed. It is possible to carry out the same calcu-
lations that lead to (90) for the negative energy solution of the Dirac equation. Equation (90)
shows the consistency of �(+)(x) with the axiom of probability and therefore demonstrates
the possibility of extending the ensemble quantum probability to include relativistic elec-
trons. However, the elements �(+)(x) are grassmann field which was necessary because
�(+)(x) was defined to be the eigenvalue of the anticommuting annihilation field operator.
The ensemble interpretation of the relativistic spin- 1

2 electron is evident in the expression
given by (86).

6 Concluding Remarks

The expansions of the wavefunctions in (17) and (86) suggest that the electron state have a
dependence on an average of a quantity, and by having that dependence the electron state-
function is including information about a possible fluctuation in measurements when con-
ducting an experiment on a quantum particle in the void vacuum. In the re derivation of (17)
for the non relativistic spinless electron which satisfies the exclusion principle a sequence
of measurements, (42), were considered such that in each measurement an electron was as-
sumed to be either occupying a kth state or not. The sequence in (42) described a situation
in which for a total of jk measurements nk electrons were separately10 found to occupy the
kth state, while the (jk − nk) measurements did not detect any electron in the kth state.
Moreover (43) takes into account the total number of ways of distributing the nk detections
of an electron among the jk measurements which means that the formalism that lead to (17)

10The word separately here is meant to indicate stochastic independence such that finding a kth state electron
in the ith run of the experiment does not influence a similar event in the following experiments, and is not
influenced by preceding experiments either. This is an important point which was brought up [5] in the SPM
approach to stochastic quantum mechanics.
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for fermions had implied in it a random electron detection process. In this sense the gen-
eral state vector in (46) implies a stochastic process, one which is needed to formulate what
David Bohm [20] calls the unpredictable and uncontrollable fluctuations in a measurement
made on a quantum particle.

The stochastic approach to quantum phenomena was previously suggested by Nelson
[21], Kershaw [22], and Rosenstein [5]. Stochastic mechanics [21] was used to treat the
Schrödinger electron as a diffusing particle with a diffusion coefficient constant of �/2m

where � is the Plank constant and where m is the electron mass. This approach lead to a
sound derivation of the Schrödinger equation but also raised the question about the physical
cause which makes the electron “diffusion” be comparable to that of a Brownian particle.
Nevertheless the derivation of the Schrödinger equation from a stochastic process perspec-
tive can be taken as a very strong evidence that random fluctuations in the particle’s state is
a physical effect that may not be ignored. One is thus naturally lead to the question of what
possible cause could exist in the void vacuum which can be responsible for the fluctuations
in the measurement which in turns will give an ensemble state function as in (17). Nelson
discusses that Bohm and vigier hypothesized a subquantum medium which by means of in-
teraction with the electron causes the random fluctuations. Their idea of interactions causing
fluctuating measurements is physically plausible but the hypothesis about the existence of
a subquantum medium must have appeared as purely speculative by then. However, given
the predictions of the quantum field theory (QFT) about a fluctuating vacuum and given
the hypothesis of the zero point field (ZPF) the answer to the question about a cause to a
measurement fluctuations does not become a puzzle anymore. For due to QFT and ZPF the
vacuum is no longer the inactive void which do not permit any interactions with a quantum
particle. The physical soundness of the existence of the ZPF is not speculative as many phys-
ical results confirmed by quantum theory were derived11 from the hypothesis of a vacuum
filled with a fluctuating electromagnetic fields and as experimental measurements of the
detectable Casimir force [27] authenticates the hypothesis of the ZPF. Thus the sequence
introduced in (42) is physically justified as one may not control the interaction of the elec-
tron with the fluctuating field. Therefore each time the experiment is conducted the electron
may or may not be found in the kth state depending on how much energy it received from
the fluctuating field it is submerged in. In fact the appearance of 〈nk〉 in (17) indicates the
impossibility of finding a quantum particle in a definite k state each time the experiment is
conducted, a description which may be taken as a theoretical evidence for the existence of
random forces on the electron from the vacuum. Supportive of this view is Boyer’s state-
ment that “in a sense, quantum motions are the experimental evidence for the existence of
the zero point radiation” [28] to which we would like to add the statement that the success-
ful prescription of the square of the wavefunction as a probability density is the theoretical
evidence for the existence of the zero point radiation manifested by the appearance of 〈nj 〉
in (17). The physical existence of the ZPF plays an important role in as far as the cause of
the experimental fluctuations that leads to the wave function’s direct proportionality to the
average particle number per state. Therefore a word about the origin of the hypothesized
ZPF becomes relevant.

11These include: Puthoff’s claim that stability of the ground state of hydrogen is a ZPF determined phenom-
enon. The calculations specifically show that the power absorbed by a circulating electron exactly equals to
the power radiated due to it’s acceleration. [23]; the treatment of the van der Waals forces as a ZPF determined
force [24]; the recovery of the Heisenberg uncertainty principle for the harmonic oscillator where fluctuations
in the electromagnetic field cause fluctuations in the positions of particles with electromagnetic interaction
[25]; the recovery of the blackbody radiation spectrum from the hypothesis of electromagnetic zero point
energy [26].
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There appears to be some physical similarity that the hypothesized ZPF and the cosmic
microwave background radiation (CMBR) have in common. For one thing, both the ZPF and
CMBR agree that space is not a void vacuum but is filled with electromagnetic radiation,
although they might disagree about the range of the electromagnetic radiation’s spectrum.
Another interesting similarity between the hypothesized ZPF and CMBR is the fact that both
assume the electromagnetic radiation to be isotropic, however, one should be careful about
this particular similarity as the CMBR is supposed to be only approximately isotropic. Yet
the most striking similarity between a CMBR result and the hypothesized ZPF is the fact
that they both exhibit the blackbody radiation spectrum. When assuming the existence of a
ZPF, Timothy Boyer (see footnote 11) was able to derive the blackbody radiation spectrum
by a theoretical argument similar to the one introduced first by Einstein and Hopf [29].
Boyer, however, imposed a new boundary condition which helped showing that the ZPF
is responsible for the blackbody’s spectrum departure from the Rayleigh-Jeans law. These
semi agreements between the ZPF predictions and the CMBR results may be considered as
a compelling evidence that the CMBR is in fact the hypothesized ZPF that many physicists
are assuming to exist a priori. Since CMBR’s results are undisputable any disagreement
that results from a comparison between CMBR and ZPF should cause a correction or a
remodeling of the ZPF such that it is completely consistent with the results of CMBR.
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